Create an Account
username: password:
 
  MemeStreams Logo

A mathematical tool for exploring the dynamics of biological networks

search

possibly noteworthy
Picture of possibly noteworthy
My Blog
My Profile
My Audience
My Sources
Send Me a Message

sponsored links

possibly noteworthy's topics
Arts
Business
Games
Health and Wellness
Home and Garden
Miscellaneous
  Humor
Current Events
  War on Terrorism
Recreation
Local Information
  Food
Science
Society
  International Relations
  Politics and Law
   Intellectual Property
  Military
Sports
Technology
  Military Technology
  High Tech Developments

support us

Get MemeStreams Stuff!


 
A mathematical tool for exploring the dynamics of biological networks
Topic: Science 6:24 am EST, Nov 27, 2007

We have developed a mathematical approach to the study of dynamical biological networks, based on combining large-scale numerical simulation with nonlinear ‘‘dimensionality reduction’’ methods. Our work was motivated by an interest in the complex organization of the signaling cascade centered on the neuronal phosphoprotein DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of molecular weight 32,000). Our approach has allowed us to detect robust features of the system in the presence of noise. In particular, the global network topology serves to stabilize the net state of DARPP-32 phosphorylation in response to variation of the input levels of the neurotransmitters dopamine and glutamate, despite significant perturbation to the concentrations and levels of activity of a number of intermediate chemical species. Further, our results suggest that the entire topology of the network is needed to impart this stability to one portion of the network at the expense of the rest. This could have significant implications for systems biology, in that large, complex pathways may have properties that are not easily replicated with simple modules.

This is an open access article.

A mathematical tool for exploring the dynamics of biological networks



 
 
Powered By Industrial Memetics
RSS2.0