Create an Account
username: password:
 
  MemeStreams Logo

Shilling Recommender Systems for Fun and Profit

search

noteworthy
Picture of noteworthy
My Blog
My Profile
My Audience
My Sources
Send Me a Message

sponsored links

noteworthy's topics
Arts
  Literature
   Fiction
   Non-Fiction
  Movies
   Documentary
   Drama
   Film Noir
   Sci-Fi/Fantasy Films
   War
  Music
  TV
   TV Documentary
Business
  Tech Industry
  Telecom Industry
  Management
Games
Health and Wellness
Home and Garden
Miscellaneous
  Humor
  MemeStreams
   Using MemeStreams
Current Events
  War on Terrorism
  Elections
  Israeli/Palestinian
Recreation
  Cars and Trucks
  Travel
   Asian Travel
Local Information
  Food
  SF Bay Area Events
Science
  History
  Math
  Nano Tech
  Physics
  Space
Society
  Economics
  Education
  Futurism
  International Relations
  History
  Politics and Law
   Civil Liberties
    Surveillance
   Intellectual Property
  Media
   Blogging
  Military
  Philosophy
Sports
Technology
  Biotechnology
  Computers
   Computer Security
    Cryptography
   Human Computer Interaction
   Knowledge Management
  Military Technology
  High Tech Developments

support us

Get MemeStreams Stuff!


 
Shilling Recommender Systems for Fun and Profit
Topic: Technology 6:13 pm EDT, Jul 31, 2004

Recommender systems have emerged in the past several years as an effective way to help people cope with the problem of information overload. One application in which they have become particularly common is in e-commerce, where recommendation of items can often help a customer find what she is interested in and, therefore can help drive sales.

Unscrupulous producers in the never-ending quest for market penetration may find it profitable to shill recommender systems by lying to the systems in order to have their products recommended more often than those of their competitors.

This paper explores four open questions that may affect the effectiveness of such shilling attacks: which recommender algorithm is being used, whether the application is producing recommendations or predictions, how detectable the attacks are by the operator of the system, and what the properties are of the items being attacked. The questions are explored experimentally on a large data set of movie ratings.

Taken together, the results of the paper suggest that new ways must be used to evaluate and detect shilling attacks on recommender systems.

Shilling Recommender Systems for Fun and Profit



 
 
Powered By Industrial Memetics
RSS2.0