Our goal in TraceMonkey is to compile type-specialized code. To do that, TraceMonkey needs to know the types of variables. But JavaScript doesn’t have type declarations, and we also said that it’s practically impossible for a JS engine to figure out the types ahead of time. So if we want to just compile everything ahead of time, we’re stuck.
So let’s turn the problem around. If we let the program run for a bit in an interpreter, the engine can directly observe the types of values. Then, the engine can use those types to compile fast type-specialized code. Finally, the engine can start running the type-specialized code, and it will run much faster.
There are a few key details about this idea. First, when the program runs, even if there are many if statements and other branches, the program always goes only one way. So the engine doesn’t get to observe types for a whole method — the engine observes types through the paths, which we call traces, that the program actually takes. Thus, while standard compilers compile methods, TraceMonkey compiles traces. One side benefit of trace-at-a-time compilation is that function calls that happen on a trace are inlined, making traced function calls very fast.
Second, compiling type-specialized code takes time. If a piece of code is going to run only one or a few times, which is common with web code, it can easily take more time to compile and run the code than it would take to simply run the code in an interpreter. So it only pays to compile hot code (code that is executed many times). In TraceMonkey, we arrange this by tracing only loops. TraceMonkey initially runs everything in the interpreter, and starts recording traces through a loop once it gets hot (runs more than a few times).
Tracing only hot loops has an important consequence: code that runs only a few times won’t speed up in TraceMonkey. Note that this usually doesn’t matter in practice, because code that runs only a few times usually runs too fast to be noticeable. Another consequence is that paths through a loop that are not taken at all never need to be compiled, saving compile time.
Finally, above we said that TraceMonkey figures out the types of values by observing execution, but as we all know, past performance does not guarantee future results: the types might be different the next time the code is run, or the 500th next time. And if we try to run code that was compiled for numbers when the values are actually strings, very bad things will happen. So TraceMonkey must insert type checks into the compiled code. If a check doesn’t pass, TraceMonkey must leave the current trace and compile a new trace for the new types. This means that code with many branches or type changes tends to run a little slower in TraceMonkey, because it takes time to compile the extra traces and jump from one to another.
so so sexy.